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In strength training, personalised strength training (autoregulation) approaches have been used
to individualise exercise programs with monitoring for dynamic adjustment based on the individual
response to training. While this transition from tradition-based training to evidence-based training
framework has been an improvement in training practices, we argue that the future of strength
training will also incorporate deep learning models powered by data. We refer to this data-driven
framework as precision strength training inspired by the similar modeling frameworks used in preci-
sion medicine. In contrast to current personalised training in which the acquired athlete data is often
subject to human expert decision-making, we are anticipating the rise of human-in-the-loop systems
with an augmented coach who will be doing decisions collaboratively with the machine. Similar to
other precision frameworks, such as precision health, we envision such a future to take decades to be
realised and we focus here on practical short-term targets on a way to long-term realisation. In this
chapter, we will review the measurement technology needed for continuous data acquisition from
an individual during training/physical activity, how to acquire these datasets for the development
of such systems and, how a proof-of-concept system could be developed for powerlifting training
with applicability to general strength and conditioning (S&C) and physical rehabilitation purposes.
Additionally, we will evaluate how the user experience (UX) of the system feedback and visualisation
could be designed.
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I. INTRODUCTION AND BACKGROUND

The massive amount of sports data generated
has enabled the use of more and more power-
ful arti�cial intelligence (AI) models for the ana-
lysis of individual athlete performance, team play
strategies and fans engagement [28, 126, 242, 713,
715]. For example, Christina Chase from MIT
Sports Lab argues that: �data is the currency
by which competitive advantage is won and lost.

∗ petteri.teikari@gmail.com

Those who �nd creative ways to unlock and har-
ness it � will be the champions of tomorrow'
[126]. Despite big data having been extensively
used for in-game decision making in professional
sports leagues, the sports business as a whole is
lagging behind other industries in their use of data,
as Sascha Schmidt puts it: �With all the excite-
ment for sports, however, we cannot neglect that,
from a business perspective, sport is one of the
most conservative industries on the planet'.

The use of data in strength training (S&C) is has
been very limited, partly due to the lack of suit-
able measurement technologies (see �gure 1 later)
that would allow continuous high-quality measure-
ment without being too cumbersome for the ath-
lete [882]. Nowadays, the strength training proto-
cols are based on practical/clinical experience and
evidence-based approaches with current evidence
however, being sparse. There is a need for fur-
ther advancement towards more more quantitative
strength training frameworks integrating objective
physiological measures with subjective measures,
going beyond one-size-�ts-all models. This frame-
work introduced in this review is referred as preci-
sion strength training, inspired by recent advances
in precision medicine.

Precision medicine, sometimes referred as per-
sonalised medicine, aims to quantitatively model
the intra- and inter-individual variability of pa-
tients in response to treatment [152] (see �gure 1).
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The concept of personalising care to the patient
is not new, but recent advances in large scale
databases, better measurement technologies, and
computational tools, such as deep learning, are
making data-driven precision medicine realistically
achievable [432]. Data-driven precision medicine
however has not yet become the clinical norm,
requiring more clinical validation and model de-
velopment for precision medicine to become one
[15, 380, 761, 873]. The use of precision medicine
framework for exercise prescription and monitor-
ing is not new either. Buford et al. [99] described
an �exercise as medicine' framework for general
population, and Ross et al. [690] demonstrated a
model that captured inter-individual di�erences in
response to cardiorespiratory exercise, coining the
term precision exercise medicine. Precision health
is conceptually close to precision exercise, as it at-
tempts not just to address the symptoms, but to
promote and prevent diseases on a population and
public health level [253, 313].
Early precision exercise medicine literature was

focused mainly on quantifying inter-individual
(between subjects) di�erences in intervention re-
sponse and identifying responders/non-responders
to exercise [36], with less work devoted on the
role of intra-individual (within-subject) variations.
This inter-individual focus was shown to erro-
neously suggest large inter-individual variation
when not addressed properly in the experimental
designs and statistical analysis [36, 144, 194]. In
a study by Islam et al. [362], the athletes showed
signi�cant intra-individual variability to the same
training stimulus, and the authors highlighted the
fact that without the use of repeated trials, some of
the subjects could have been wrongly classi�ed as
high or low responders. In contrast to traditionally
used net mean treatment e�ect in studies, one is
interested in the individual responses [600] within
precision exercise framework, and how measure-
ment noise (that is random) can be disentangled
from the inherent physiological response (that is
reproducible) [361]. While there have been ad-
vances in statistical methods to analyse these het-
erogeneous responses [174, 801], the future stud-
ies need to consider jointly the research protocol
design, measurement technologies, and modelling
tools for disentanglement of sources and causal re-
lationships [761, 776, 836].
In strength training, concept of personalised

training (referred also as autoregulation [276])
has existed for some time, in which the training
load and recovery status of an individual athlete
are continuously monitored, and the exercise con-
tinuously adapted by a human coach (subjective
decision making) using the monitored paramet-
ers output [61, 135, 537]. The scienti�c chal-
lenge in practice with this framework has been
the proper parametrisation of 1) the training load
[40, 55, 654, 883]; 2) the recovery state and pre-
paredness to train [322, 394, 537]; 3) injury risk

prediction [356, 357, 601, 755, 881]. Out of these
three goals, training load and recovery state are
within practical reach at current technological ma-
turity level, whereas injury prediction seems overly
challenging [315, 356, 357, 385, 386, 599, 678]1,
mainly due to inherent low prevalence of injur-
ies in athletic population [101, 105, 344, 377, 397,
627, 686, 743, 878], which subsequently leads to in-
jury prediction models with poor predictive power
[348, 504].
In precision medicine literature, personalised

and precision medicine are sometimes used inter-
changeably, where in this review the �precision'
in precision strength training framework refers
to the dynamic data-driven training program in-
dividualised for each athlete, and updated dy-
namically based on the 'precision biopsychosocial
model'. The de�nition of autoregulation (person-
alised training) framework is relatively ambiguous
in the literature [276], and the approach described
in this review �ts to existing loose de�nition, but
we wish to stress the quantitative modeling aspect
with our precision pre�x, inspired by the precision
medicine literature. In brief, precision medicine is
interested in developing disease progression mod-
els [902], prescriptive modeling with individualised
treatment e�ects [78, 141, 473, 625], phenotyping
patients [593, 832, 866], and acquiring patient sim-
ilarity measures [729].
Transferring these tasks to the strength train-

ing context (see �gure 1), the training progress
can be interpreted as the disease progression tra-

jectory, the changes in training program and act-
ive recovery interventions as medical interven-
tion/individualised medical treatments, and the
clustering/phenotyping athletes based on their re-
sponse to training, e.g. machine learning re-
commender system for sports [254, 574] with re-
commendations like you �athletes with similar
trunk:thigh ratios cannot squat as upright'.
The personalisation in strength training,

is typically based on subjective measures for
daily preparedness and logged training loads,
with training adjustments done subjectively
by either human expert [210, 276, 392, 875],
or by non-learning mathematical meth-
ods [104, 231, 328, 329, 343, 597, 749]. A
practical commercial example of the math-
ematical modelling approach for strength
training is the JuggernautAIR© system
(https://www.jtsstrength.com/product/powerlifting-
a-i/), which �rst surveys basic athlete charac-
teristics, then designs training periodisation
and updates the program dynamically based on
the logged progress of the athlete. This type
of system can be seen as an upgraded train-
ing diary/logger with more advanced training

1Sam Robertson's tweet, Aug 2, 2019 twit-
ter.com/robertson_sj/status/1157188689702707200
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feedback [509, 804], examples of traditional
loggers are GravitusR© (https://gravitus.com/),
StrongR© (https://www.strong.app/), gymaholicR©

(http://www.gymaholic.me/). These consumer-
level train loggers do not typically handle
aggregation of objective measures (see section �III
later), and their use for advanced data-driven
training modeling is somewhat limited.
In larger professional sports organisations, more

advanced athlete management systems (AMS)
[268, 541] are used instead these consumer-level
training diaries. For example, SmartabaseR©,
an AMS developed by Fusion SportR© (ht-
tps://www.fusionsport.com) integrates electrical
medical records (EMR) [789] and athlete perform-
ance data with the possibility to develop mul-
timodal models while managing of multiple ath-
letes. Such systems are used by various profes-
sional sporting organisations ranging from UFCR©

Performance Institute [471] to The Royal Bal-
let (UK) [180]. At present, athlete management
systems lack interoperability application program-
ming interface (API) standards [642] such as the
one developed for healthcare, like the HL7 FHIR
version 4.0.1 introduced in USA starting from 1st
January 2021 [568, 705, 812]. Many vendors such
as KinductR© , SmartabaseR©, Edge10R©, KitmanR©

and BridgeAthleticR© have though formed partner-
ship allowing cross-vendor aggregation of athlete
data 2.
Precision strength training is similar to preci-

sion physiotherapy in which the physical rehabil-
itation program (e.g. after an orthopaedic surgery
or a stroke) is being individualised to the patient
with data-driven deep learning models and gami-
�ed therapy [86, 463, 496, 785, 885]. In United
Kingdom an interest group called �Digital and In-
formatics Physiotherapy Group (DIPG)� (part of
the Chartered Society of Physiotherapists, CSP)
was formed to develop, evaluate and promote was
formed to promote the use of novel technologies
such as virtual reality (VR), telerehabilitation and
AI in clinical physiotherapy. Having possibility
of patients exercising at their homes with auto-
matic real-time exercise feedback [161, 173, 209,
294, 477, 538, 595, 674, 675, 704, 815] could pos-
itively in�uence exercise adherence leading to im-
proved patient outcomes and lowered healthcare
costs [445, 884]. Similarly, these personalised and
gami�ed approaches could be designed for general
population as a preventive health measure [825],
for example to increase the uptake of resistance
training [63, 867], as 80% of European adults do
not meet the global resistance training guidelines
of 2 or more days of resistance training per week
[62].

2https://blog.bridgeathletic.com/integrating-your-
tools

As precision strength training does not yet exist
as an established �eld, we derive the concepts in
this review from literature on evidence-based per-
sonalised strength training[562], precision phys-
ical rehabilitation [885], deep learning [873] and
sport science [126, 653, 677], to give the read-
ers an overview of plausible future scenarios in
strength training. We will review the challenges
involved in the development of precision strength
training framework by going through the relevant
sports measurement technology, dataset require-
ments, strength training theory and service design
for relevant for deploying the system to be used by
the patient, clinicians, athletes and their coaches,
in an e�ort to try to bridge the gap between in-lab
theoretical sports science and real-world deploy-
ment [97, 529, 531, 865].
In this review, we refer to three generations

of strength training systems: 1) tradition-based
training, that is often referred as practical or clin-
ical experience, and is the tacit knowledge gained
by the practitioners; 2) evidence-based training,
that is based on scienti�c strength training stud-
ies with relatively narrow inclusion criteria applic-
able to speci�c populations and set of assumptions.
The intra- and inter-individual variability is mit-
igated by selecting relatively homogeneous pop-
ulations; 3) data-driven precision strength train-
ing, that uses broader inclusion criteria and at-
tempts to model the exercise responses of a lar-
ger heterogeneous population. The intra- and
inter-individual variability in response to train-
ing is learned from the acquired using multivariate
(high-dimensional) AI models.
We will envision strength training and sports

management to follow the advances in medicine
and society as a whole, with the trend for in-
creased human-machine interplay in human-in-
the-loop systems, that are developed augmenting
human experts rather than by replacing them with
AI [49, 258, 279, 310, 615, 742, 753]. It is not trivial
to transfer and quantify the tacit knowledge from
athlete-coach to be used for quantitative modelling
[81, 482, 588], and the �n = 1� expert knowledge
need to built into these precision strength training
frameworks [332, 442, 478, 566, 634, 722, 740, 831].
Eventually, over the coming decades, the more
conservative �non-tech� strength training coaches
will be re replaced by the strength training coaches
embracing AI, as it is projected to take happen for
example to radiologists [721].
The review has been written with a focus on

machine learning practitioners, who are familiar
with mathematical modeling concepts, and less
with strength training and sports science domain
knowledge [616, 677]. We take a systems-level ap-
proach in this review [33, 64], covering measure-
ment technology, basic modeling concepts, dataset
requirements and user experience in future quant-
itative strength training systems [145, 850], built
on top of the evidence-based strength training re-

3

https://gravitus.com/
https://www.strong.app/
http://www.gymaholic.me/
https://www.fusionsport.com
https://www.fusionsport.com
https://blog.bridgeathletic.com/integrating-your-tools
https://blog.bridgeathletic.com/integrating-your-tools


Precision strength training SportRχiv preprint, doi: 10.31236/osf.io/w734a

search [563]. Less emphasis is placed on the re-
cent emerging exercise physiology concepts such as
�network physiology of exercise' that is a system-
level approach on how physiological states emerge
from complex nonlinear interactions within human
body [44]. In general, we would hope that this re-
view is a good starting point for data scientists,
entrepreneurs and sports scientists understanding
the main challenges in strength training modelling,
as often in digital health, solutions are developed
for non-existing problems [483, 525].

II. FROM PERSONALISED TO
PRECISION STRENGTH TRAINING

In this review, the term personalised strength
training refers to the current evidence-based
strength training practice [562], where athlete are
being monitored with some sensor technology, but
majority of the training intervention decisions are
being made by a human expert (e.g. a coach
or a physiotherapist). The existing quantitative
frameworks, for example for injury prevention and
prediction, are not the most useful at the mo-
ment for expert-level coaching [356]. In practice,
there are no quantitative frameworks augmenting
coaching decision, and human coaches are often
overwhelmed by the various training load and re-
covery metrics, and often fall back on more con-
servative evidence-based or practical experience
measures [406, 601]. This is especially true in
strength sports such as in powerlifting, in which
the practitioners often resort to trial and error
approaches, as evidence-based protocols are lack-
ing [821]. None of the suboptimal quantitative
frameworks, such as acute:chronic workload ratio
(ACWR) [20, 851], are truly data-driven and are
rather more conceptual models. There have not
been any major arti�cial intelligence studies to the
authors' knowledge for strength training research,
with the few studies using machine learning have
used small datasets mostly for proof of concept
studies, and not for real-world deployment [653].
Strength training (or S&C) can be broadly

de�ned by three types of training goals: 1) max-
imal strength production (e.g. powerlifting) [563,
912]; 2) hypertrophy training to increase muscle
mass (e.g. bodybuilding) [364, 379, 716, 750];
3) rate of force development (RFD), the produc-
tion of explosive strength for example in Olympic
weightli�tng, boxing and track and �eld sprint-
ing [197, 603, 717, 829]. In practice, a mixture
of the goals are present, especially in non-strength
sports, in which for example both muscle mass and
increased maximal strength might be desired (e.g.
American football), and in weight-class sports such
as boxing, explosive strength might be desired
without the added muscle mass. In these cases,
the monitored metrics should be adjusted accord-
ingly to the speci�c sports in question [308, 322].

The need of sports-speci�c measure is high-
lighted for example by the possible counter-
intuitive e�ects of hypertrophy to strength levels
described in recent research. Reggiani et al. [664]
showed that the increase in muscle mass did not
necessarily lead to increase in strength and vice
versa [664], and in worst case, the increase in
muscle mass was shown to decrease strength pro-
duction [664, 718]. There also seems to exist mul-
tiple types of muscle hypertrophy [664, 820], with
the concept of task-speci�c hypertrophy [820] be-
coming relevant when trying to transfer the gains
from strength training program to improvements
in the particular sport of the athlete [906]. For
instance sports as di�erent as combat sports [485,
765] and ballet [16, 180, 818], can be bene�ted for
similar plyometric/ballistic training for explosive
force production [906] mixed with some maximum
strength training. Whereas in sports like pole dan-
cing that do not require explosive strength, bene-
�t more from powerlifting-type maximum strength
training [874]. In circus training [293, 435] and in
throwing sports [82, 340], more emphasis should
be put on warming tendons and ligaments prop-
erly, and making sure that the tendons adapt to
training and do not fall behind from faster muscle
strength adaptation [387].
One-repetition maximum (1RM) is probably the

most commonly used tool at the moment to per-
sonalise strength training programs [810]. Ath-
lete's training loads are programmed using some
percentage of 1RM, e.g. at week 1: 3 sets of 5 re-
petitions at 60% of 1RM, week 2: same at 70% of
1RM, and so on. These percentage progressions
are typically programmed using some tradition-
based values, that the practitioners have found ef-
fective in the past, using training cycles of vari-
ous lengths. This splitting of training to cycles
is referred as periodisation often involving the fol-
lowing concepts: macrocycle (e.g., 1 year between
the main competition of the athlete), mesocycle
(e.g., 4 weeks), microcycle (e.g., 1 week) and indi-
vidual training sessions. For example in powerlift-
ing, the goal of macrocycle, is to increase the 1RM
of the athlete as much as possible, while monitor-
ing the progression of 1RM during that macrocycle
[40, 763, 819]. In practice, proxy measures need
to be developed for this progression monitoring,
as the athletes are not often programmed to lift
100% of 1RM very often, as such heavy loads dur-
ing training season are seen counterproductive for
the overall progress and needlessly increasing the
risk of injury. Thus, one wants to �nd a balance
between of not overtesting the athletes, without
the test measure possibly coming the goal itself
[40, 699], and not undertesting the athletes and
not without being able to track the training pro-
gress [819].
Research has been devoted for �nding indirect

(proxy) measures for the 1RM progression, with
no conclusive measure for strength training. For
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Figure 1. Precision medicine vs. precision strength training. (A) Simpli�ed model of traditional 'one-size-
�ts-all' medicine uses simple decision rules for treating all patients the same [168], whereas precision medicine
attempts to tailor the treatment based on di�erent subtypes [455] or individualise the treatment based on the
individual patient [181]. The health states on the three-dimensional trajectory manifold in strength training
can be interpreted as progress, the athlete needs to have the peak performance (health state) in competition,
and optimal decisions need to be taken to get there. Some decisions on the manifold takes the athlete only
sideways, i.e. performance is plateauing despite the modi�cations to training. Note that both subtyping and
health trajectory are visualised with dimensionality reduction techniques such as t-SNE or UMAP to make high-
dimensional nonlinear models human interpretable [43, 423, 517, 782]. (B) In strength training, the equivalent
to one-size-�ts-all approach are the training program templates o�ered often online with little customisation to
the athlete [443]. Personalised strength training (or autoregulation) is often done with a coach who updates the
program for the athlete [169]. In our simpli�ed example, two training mesocycles are shown, in which the athlete
is able to do the programmed exercises on week 1 but fails to do so on week 2. On week 3 the programmed
loads are dropped to the levels of week 2 [321], and the athlete is able to keep up with the programming during
the �rst mesocycle. During second mesocycle, the athlete shows overtraining syndrome, and keep up with any
of the programmed loads (�performance gap'), except on the week 4 that is a deloading week. In our simpli�ed
precision strength training framework, the level of training preparedness would be quanti�ed, and overtraining
symptoms could be reduced faster by reducing training loads (personalised intensity reductions) when the model
has detected that the athlete has not recovered properly. The accuracy of such automatic adjusting obviously
depends on the quality and availability of data for training such models as we review in this article.

example squat jump height (SJH) [819] and iso-
metric mid-thigh pull (IMTP) [374] have been
used as proxies for Olympic weightlifting monitor-
ing; multiple repetition test [671], and mean con-
centric velocity (MCV) from load-velocity curve
have been used for 1RM estimation in powerlifting
[50, 862, 876]. Common problems with these test-
ing measures is that the testing itself is too phys-
ically demanding requiring a recovery period itself
[667], and that the athletes might become better
in doing the proxy measures themselves during the
monitoring period, i.e. there is a learning e�ect
occurring, that can bias the measurements and in-
crease the uncertainty in progression monitoring
[763].

Conceptually, a more complete approach for
performance tracking, is to use for example the
acute:chronic workload ratio (ACWR) [358], that
is based on classical �tness-fatigue model [106].
In ACWR there are internal and external loads

[297, 355�357]. The external load is the prescribed
exercise session, e.g., the training load and volume.
The internal load corresponding to the training
preparedness and recovery state, including all the

factors in�uencing athlete's ability to recover, such
as sleep quality [66, 136, 287, 480, 745, 844, 847],
nutrition [26, 85, 112, 554, 558, 614, 750, 826], and
overall stress in life [324, 365, 771], i.e. constitut-
ing for the biopsychosocial model of the athlete
[319, 809]. The external load is easier to quantify
with less uncertainty, assuming that the athlete
is doing every workout with repeatable technique
and focus (�exercise adherence�) [810, 926]. The
ACWR as a quantitative model however does not
seem to perform at a satisfactory level, and in
practice expert judgement is preferred over its
predictions [356], thus the key idea of the pre-
cision strength training framework is the devel-
opment of a quantitative biopsychosocial model
that would help to explain the observed intra- and
inter-individual variability responses to training
programming [280].

There is an ongoing transition from tradition-
based strength training, so-called 'bro science' in
gym jargon [2], to evidence-based strength training
[563, 716], with some strength & coaching coaches
resisting this cultural change [2]. Some scepti-
cism to evidence-based training is warranted, as
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Figure 2. (A) Personalised (evidence-based) strength training [276, 563, 629] in which the human coach interprets
the process and makes the decision for the athlete being guided by science [2], using some tradition-based heuristics
[169]. Some of the training is quanti�ed for example in a form of training log with subjective rating of perceived
e�ort (RPE) or reps in reserve (RIR, and mathematical models can be developed from them. The dose-response
to training prescription depends on the athlete's internal load [280, 324, 327, 355, 507], that is not often captured
quantitatively by the existing frameworks such as acute:chronic workload ration (ACWR) [357]. (B) In idealised
future, the precision strength training framework built top on evidence-based training is able to quantitatively
measure and model both the internal and external load and adjust the training and recovery activities accordingly
collaboratively with the coach.

several gaps between the theory and practice in
strength training research exist due to the �eld
being so small, and therefore, practical coaching
decision thus often requiring a lot of improvisa-
tion around the fragmented evidence. Evidence-
based medicine (EBM) has faced similar resist-
ance to change from its inception in the early 90s
[89, 221, 421, 514, 548], with some clinicians stat-
ing that EBM has led to diminished acceptance of
�the art of diagnostics� or personal clinical judge-
ment [275, 454].

Similar resistance to change is felt with the re-
cent early implementations of precision medicine
[15, 696], both at the organisational level [696] and
at the scienti�c level in terms of implementation
readiness. For example, molecular pro�ling, clin-
ical risk modelling and pharmacogenomics (PGx)
are more mature and closer to broad implement-
ation compared to less understood genomic EHRs
and disease subtyping [15]. The overselling of
model such as ACWR [356], can have its analogy
in computer-aided detection (CAD) for mammo-
graphy in breast screen screening. The CAD mod-
els were constantly underperforming compared to
human readers [304], leading to an increased cost
of proofreading and evaluating unnecessary false-
positive results [211], and eventual distrust of all
algorithmic solutions. Recently, Ziegelstein coined
the term personome in 2015 to describe the pro-
cess of bringing back the person of the patient, and

how the patient biopsychosocial state with quant-
itative measures modulate their response to treat-
ment [931]. This is similar to our vision on how
in precision strength training framework, the full
biopsychosocial model of the athlete is formulated
in more quantitative framework.

III. MEASUREMENT TECHNOLOGY
FOR PRECISION STRENGTH TRAINING

We will review here the most commonly used
measurement technologies for monitoring athlete's
strength performance.. The cost and size of high-
end motion capture systems have traditionally
constrained the use of these technologies in �eld
studies and outside the sports science laborator-
ies. With emergence consumer devices such as
MicrosoftR© KinectTM re-purposed for sports sci-
ence, the cost of technology has become less of an
issue [14]. Recently interesting developments in
wearable compressive garment-based sensor plat-
forms [286] and novel sensors/actuators developed
for extended reality (XR) [383, 854] and soft ro-
bots applications [738] are enabling the design
of future non-invasive and cost-e�ective continu-
ous performance monitoring solutions for strength
training.
The development in sensor technology and its

ease of use might re�ne the de�nitions of the test-
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ing (done infrequently) vs monitoring (done of-
ten) variables used by some S&C coaches [667].
Some of the measures such as blood sampling
and dual-energy X-ray absorptiometry (DXA) cur-
rently seen as testing measures might become
monitoring measures with the introduction of low-
cost and accurate future alternatives [252, 303,
333, 456, 462, 633, 814]. Some functional test
measurements such as isometric mid-thigh pull
(IMTP), might be replaced with something less
physically demanding to make their use more fre-
quent as a monitoring measure. While often in
functional testing, it is the simplest to use some of
the main exercise movements, such as bench press
or squat, at the end of each mesocycle for progres-
sion monitoring, without increasing fatigue levels
of the athlete [363].
Similarly, the more athlete-friendly sensor tech-

nology could make monitoring more time-e�cient
and better integrated to training routines. This
especially applies in team sports in which athlete-
level monitoring is sometimes challenging [766].
Future studies should also look into developing
a proper �sports economics' frameworks, inspired
by health economics [42, 127, 151, 569], which
would include the time and �nancial cost of given
measurement technology compared to its expected
value for athletic performance.
Easily acquired continuous measurements are

not always helpful when the signal has low �-
delity, or when the data is not the most rel-
evant for the task in question [113]. Example
of consumer-level large-scale data acquisition can
be found from the �quanti�ed self� (QS) move-
ment, in which participants track their biomarkers
as biohackers for data-enabled self-improvement
[4, 175, 219, 528, 811]. Participants in QS move-
ment do not always feel the measurement as source
of motivation and entertainment as often por-
trayed [163], but rather feel anxiety from self-
measurement and not being able to meet their
goals [18, 52, 219]. Similar patient anxiety has
been shown with recent digital health solutions,
such as implementation of atrial �brillation de-
tection via smartwatches, that do not seem to of-
fer high enough signal �delity, leading to excessive
false-positive diagnoses and incurring needless ex-
penses and patient anxiety [621]. In contrast, con-
tinuous data acquisition with smartwatches seem
to be useful for monitoring Parkinson's disease
patients[637], helping the clinicians to track the
symptoms and manage treatment better [8]. In
practice, even at the highest signal quality, the
measured variables cannot capture the athlete's
whole biopsychosocial performance. Therefore,
the inherent uncertainty in the combined measures
should be taken into account when using the meas-
ures for decision-making [40, 299, 684], to avoid
key performance indicator (KPI) �xation like ones
seen in university evaluation systems [773].
Most of the recent products from digital thera-

peutic and sports analysis companies such as Kaia
HealthR© (https://www.kaiahealth.com/), FitcusR©

(https://www.�tcus.com/), Curv HealthR© (ht-
tps://www.curvhealth.com/), and KinetisenseR©

(https://kinetisense.com/) rely on unimodal kin-
ematic video data, either using a standard smart-
phone camera or by the company-produced cus-
tom camera. Whereas companies such as Figur8R©

(https://�gur8tech.com/) has chosen to comple-
ment their inertial measurement unit (IMU)-based
kinematic data with muscle activation data from
a mechanomyographic (MMG) sensor, for a mul-
timodal measurement of the athlete behaviour.
These business choices have been partly driven
by consumer expectations of a delivery via smart-
phone apps, and the longer development times as-
sociated with new hardware development favour-
ing software solutions over hardware solutions [68].
We hypothesise that smartphone-based kinematic
data might not be of su�cient quality for training
precision strength models, to obtain good enough
actionable insights [754, 930], to surpass or aug-
menting well the human expert opinion. However,
eventually with large enough multimodal datasets
acquired, precision strength training models could
be trained with multimodal datasets, and deployed
then to be used only with video data, and to
approximate the missing modalities such as kin-
etic data, from the unimodal kinematic data alone
[139, 250, 376, 657].

A. Kinematic: Motion Capture and Pose
Estimation

Motion capture (mocap, mo-cap) refers to the
quanti�cation of movement patterns of objects (e.g
surgical tools), animals, and people [58, 527, 712,
796]. In sports and rehabilitation applications, the
study of these biomechanical measurements are of-
ten referred as movement science [269, 769]. The
estimated human pose from video or sensor stream
[923], is typically encoded as a skeleton pose se-
quence that is a time series of three-dimensional
joint locations [298, 444, 493] (see �gure 3). The
technical details on how video, sensor, radiofre-
quency (RF) or point cloud data is transformed
into skeleton sequences is beyond the scope of this
review, and the interested readers are referred to
following works [345, 372, 617, 645, 898].
The choice of the deep learning approach for

modelling skeleton sequences, is typically based on
graph convolutional networks (GCNs) [736, 916],
where the nodes of the graph represent the 3D
joint locations, and edges of the graph represent
the bone connecting the joints. In addition to this
basic joint-level encoding, one can encode addi-
tional features on the graph (if acquired) on the
edges and nodes of the graph [492, 632, 736]. For
example muscle sti�ness and muscle activation are
useful in strength training and can be encoded on
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Figure 3. Example set of measurement modalities useful for developing precision strength training frame-
works. Motion capture (kinematic) data for movement quality assessment [607], testosterone assay for both
acute exercise-induced response and global levels [288, 484], muscle oxygenation with fNIRS [679], ultrasound
SWE for the (real-time) quanti�cation of musculotendon sti�ness [419, 467], cartoon of smart insoles for quantify-
ing center-of-pressure (CoP) and the tripod loading , force plates for measuring ground reaction forces [245], EMG
for measuring �activation� [257] (�myoelectric activity� more exactly [841]), sweat-based biochemical sensing for
detecting metabolic and neuromuscular fatigue from ammonia and lactate levels [697], core body temperature
for circadian phase [788] and muscle temperature measurements for training preparedness, subjective rating of
e�ort through RPE logging (https://www.reactivetrainingsystems.com/), cognitive load from electrical (EEG)
[396] and hemodynamic (fNIRS) brain activity [395]. Image from Dr. Ben Pollock, reproduced with permission.
fNIRS functional near-infrared spectroscopy, SWE shear-wave elastography, RPE rating of perceived e�ort

the edge of the graph; tendon sti�ness and range
of motion (ROM) can be for example encoded on
the node of the graph.
The GCN formulation also allows to use tra-

ditional signal processing techniques such as dy-
namical mode decomposition (DMD) and Koop-
man operator [503, 561, 892] to approximate non-
linear human locomotion with a computationally
simpler linear system [247]. However, recently
neural ordinary di�erential equation (ODE) based
models have shown to be a more versatile ap-
proach compared to DMD, with better intrinsic
handling of missing and irregularly sampled data
[132, 780, 901]. Additionally, graphs (single ath-
lete) can be embedded into larger graphs (e.g.
team of athletes in a basketball game), if one would
be interested in how group dynamics (e.g. bas-
ketball game) a�ect the individual biomechanics
[248], or vice versa.
There are a variety if di�erent motion capturing

technologies including low-cost inertial measure-
ment units (IMUs) [619, 680], wearable cameras
(�egocentric pose estimation') [179, 350, 489, 502],
smartphone cameras [497, 539, 643], KinectTM-
type depth cameras [14, 102, 148, 626], and high-
end motion captures system such as ViconTM or
OptitrackTM, with the prices of high-end system

reaching up to to $200,000 [808, 817]. Di�erent
technologies o�er di�erent spatial and temporal
resolutions, and make di�erent tradeo�s in terms
of performance and cost. For example the spatial
accuracy of joint locations is especially relevant for
tracking very subtle changes in movement patterns
[575, 728], and high temporal resolution is desired
for fast-paced sports such as mixed martial arts
(MMA) [907]. The choice of used technology ul-
timately depends on the application, but for our
strength training application in advanced athlete
population, we are more interested in spatial resol-
ution than temporal resolution. As highlighted by
Seethapathi et al. [728] for movement science re-
search, the o�-the-shelf deep learning models such
as OpenPose [109] trained on generic movement
datasets such as NTU-RGB 120 [486] might not
provide good enough spatial joint locations high-
lighting the need for custom dataset acquisition
(see IVC below).
The video-based motion capture systems o�er

a higher spatial accuracy compared to low-cost
IMUs, that are based on sensing changes in grav-
ity (accelerometer) and rotation (gyroscope) [680],
and converting those measures into estimates of
human movement. IMUs o�er higher temporal
precision at lower cost compared to cameras. Ad-
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ditionally in contrast to cameras, the IMUs can be
worn by the athletes as a smart compressive gar-
ment [411, 893], developed for example by compan-
ies such as XsensTM (https://www.xsens.com/),
Cape BionicsTM (https://www.capebionics.com/)
and TeslasuitTM https://teslasuit.io/. The wear-
able compressive garment is relatively invisible to
the athlete, but the technology has not gained
the market traction as hoped by the companies
and practitioners [155]. IMU-based systems ad-
ditionally can be used for continuous measure-
ment [663] when longitudinal trends and day-to-
day �uctuations in movement patterns are of in-
terest [172]. The challenges with the use of IMUs
is their time-dependent drift [868], soft tissue ar-
tifacts due to skin motion in relation to underly-
ing bone [236, 460, 909], and the need for com-
plicated calibration making their use cumbersome
[71, 803, 868]. Recently, low-cost alternatives to
IMUs have been developed, such as strain sensors
embedded in knee braces [262], and as electronic
skin sensors for monitoring lumbar-pelvic move-
ments [919].

B. Kinetic: Force measurement

The kinematic data only quanti�es the bio-
mechanics of athlete performance, e..g the squat
movement pattern [607] but does not tell any-
thing about the forces produced by the athlete,
for which we need to measure the kinetic data
[413]. Multiple technology options exist for kin-
etic data measurement including low-cost smart

insoles, Nintendo Wii Balance Board, and high-
end �gold standard force plates for kinetic data,
that can be used to derive ground reaction forces
(GRFs), rate of force development (RFD) and
centre of pressure (CoP) parameters. In sports
performance laboratories, the force plates are
routinely used [526, 759], but recently low-cost in-
soles [195, 250, 378, 612, 795, 864] and NintendoR©

Wii Balance BoardTM [543] have been investig-
ated as alternatives as the cost of force plates
can be prohibitive in some cases. Recently, non-
learning mathematical [863], and deep learning
models have been developed to approximate the
forces generated by the athlete, solely from non-
kinetic measurements, such as from kinematic data
[323, 375, 724]. These approaches naturally re-
quire development datasets with the both mod-
alities (kinematic and kinetic) in order to validate
the approximation accuracy of the model when de-
ploying to real-world use just with the kinematic
modality.

C. Muscle activation measurement

In addition to the kinematic and kinetic data,
strength training research is often interested in
how and when muscle is activated/recruited dur-
ing movement [261], when muscle experiences
fatigue [513], and how di�erent neuromuscular
processes are involved in force production [415].
The most common measurement technology used
for these purposes is surface electromyography
(sEMG) [6, 73, 100, 115, 784, 841], that involves
placing electrodes on top of the skin, either as in-
dividual single sensors or embedded onto a wear-
able smart compressive garment suit [189, 286,
411, 752, 896]. Kim et al. [411] studied the ef-
fect of garment �t, i.e. clothing pressure, to sEMG
signal �delity, and showed higher pressure led to
improved signal-to-noise ratio (SNR) highlighting
the need for customisation of smart garment. This
has been applied in practice, for example by Cape
BionicsTM company, scanning the athletes in 3D
(see e.g. [814]) and customising the suit from the
scan to the given athlete.

There has been some controversy on the useful-
ness of EMG in strength training research [159,
216, 840, 841], with some people claiming EMG
being totally useless for strength training [159],
while some have argued EMG having still value
given proper interpretation knowing the limita-
tions [840, 841]. It has been acknowledged that one
cannot infer from the EMG amplitude alone the
number of the motor units recruited to complete
a speci�c movement/task because the number will
exclusively depend on the muscle group(s) being
recorded [257]. Mesin et al. [544] for example
showed that tibialis anterior has a super�cial-to-
deep recruitment pattern, causing the sEMG amp-
litude to rise faster than the force levels. This sug-
gests that in some cases, both surface and intra-
muscular electrodes could be used simultaneously
[924], for more complete view of the muscle activ-
ity. The use of sEMG seems always justi�ed for
studying the timing characteristics of muscle activ-
ation and deactivation, information that could be
used in musculoskeletal model simulations [464].

Vigotsky et al. [841] argue that one thus should
avoid using the term �muscle activation� when re-
ferring to EMG amplitudes, and utilise terms such
as 'myoelectric activity' or �muscle excitation', as
sEMG measures changes in muscle �bers' mem-
brane potential. Throughout this review, we use
the more generic term 'activation' in broad sense
for all the techniques aimed for measuring some
sort of muscle activation/excitation. At the mo-
ment there seems to be no evidence suggesting
that sEMG is suggestive of hypertrophy monit-
oring [296], nor there is really evidence to sug-
gest that training load recommendations could be
extrapolated from sEMG amplitudes [841]. More
studies are needed to understand the training load
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programming and sEMG amplitudes [841]. De-
tailed review of sEMG intricacies is beyond the
scope of this article, and interested readers are re-
ferred to the excellent review by Vigotsky et al.
[841].
Furthermore, it is also possible to to use

the intramuscular or surface electrodes to drive
muscle activity, known as electromyostimulation
(EMS) [229], neuromuscular electrical stimulation
(NMES) [237], functional electrical stimulation
[399], electrical muscle stimulation [220], or elec-
trical dry needling [199]. In strength training, elec-
trical stimulation can also be used to test the force
production of muscles such as m. abductor hallu-
cis (AbH) that are often hard to voluntarily ac-
tivate [592]. Recently, sEMG research and tech-
nology development have been driven by human-
computer interaction (HCI) �eld with the interest
for hand gesture sensing [577, 854], from com-
panies such as FacebookR© that recently had ac-
quired companies CTRL-LabsTMTM, a company
who owned the intellectual property (IP) for the
MyoTM EMG armband also used in exercise ap-
plications [431, 453, 479, 556].
Complimentary to electrophysiological

sEMG, there are its �mechanical counter-
parts': mechanomyography (MMG) [790], force
myography (FMG) [59, 891] and tensiomyography
(TMG) [494]. They are similarly measured
from the surface of the skin, while not com-
monly used in sports application, when done,
they are acquired simultaneously with sEMG.
Sonomyography (SMG) is an ultrasound-based
�morphological counterpart' of sEMG [285, 692],
and is also often measured simultaneously with
other activation modalities for complementary
activation information. Functional near-infrared
spectroscopy (fNIRS) [535, 701] can be used
to measure the hemodynamic muscle response
to study muscle oxygenation behaviour [23].
Similarly to other complimentary methods, it is
often used simultaneously with sEMG as recently
demonstrated in a wearable suit designed for
European Space Agency (ESA) space crews [188].

D. Muscle morphology and its viscoelastic
properties

In addition to the kinematic, force and activa-
tion data, researchers are often interested in the
morphology of the musculoskeletal tissues, i.e. its
geometry, thickness, and sti�ness. Ultrasound
imaging (ultrasonography) is the most commonly
used technology for measurement of muscle prop-
erties, due to its high spatial resolution and relat-
ively low cost [813]. Ultrasonography can be aug-
mented with ultrasound shear wave elastography
(SWE) that enable continuous measurement of
viscoelastic properties of musculoskeletal tissues
[166]. SWE can be used to study the muscle sti�-

ness after training session [830], Achilles tendon
sti�ness in natural environments using a wearable
SWE [302], Achilles tendon sti�ness and its e�ect
on ROM in squat [270], dynamical muscle con-
traction during squat [571] with deep learning in-
version [224], changes in viscoelastic properties of
muscle during fatigue [119], and e�cacy of stretch-
ing program [21, 240]. Myotonometry (MMT) is
a low-cost alternative to SWE for assessing mus-
culoskeletal tissue sti�ness, that was recently used
simultaneously with SWE to construct a 3D spa-
tial map of muscle sti�ness [419], and with TMG to
measure neuromuscular response and muscle sti�-
ness [452].
With the acquisition of kinematic, kinetic, ac-

tivation and morphological parameters of an indi-
vidual athlete, it is possible to construct person-
alised neuromusculoskeletal (NMS) models [186,
227, 407, 446, 630, 709]. Moreover, with the
continuous acquisition of athlete-speci�c paramet-
ers, personalised dynamic neuromuscular model
for real-time feedback and visualisation are pos-
sible to develop with deep reinforcement learning
(DRL) as done recently by Lee at al. [464]). Same
model can be used then to track the longitudinal
musculoskeletal changes over a training cycle, that
could be indicative of training progression, injury
risk or overtraining. Typically, the translation of
such models to �eld use or typical clinical applic-
ations is challenging as often the acquisition of all
these modalities are not done. There is a desire to
either sample the missing modalities from a gener-
ative deep learning model [177, 737, 889], or train
a deep learning model to approximate a full set of
measures, using for example a low-cost wearable
sensors such as IMUs [630].

E. Overtraining: Heart Rate Variability
(HRV)

Heart rate (HR) monitoring, either via optical
photoplethysmography (PPG, e.g. on ring or on
smartwatch) or electrocardiocardiographic (ECG)
chest straps, are probably the most commonly
used wearable sports technology. HR monitors
are frequently used in endurance sports monitoring
[838], but they have been recently used in strength
training to assess the overtraining/recovery status
of the athlete [511, 655, 805], often involving
overnight sleep recordings rather than during the
training session itself [756, 877]. From these meas-
urements, heart rate variability (HRV) is the most
commonly derived parameter [193, 389], with the
ring or wrist band monitor/sensor o�ering ease-of-
use and good adherence. However, the relatively
lower signal quality of PPG compared to ECG
chest strap, should be noted [631] as it contributes
to higher uncertainty in derived HRV paramet-
ers. Early research on using HRV with strength
training was promising [129], while the more re-
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cent studies suggest caution for the usefulness of
HRV use for assessing the recovery status of the
athlete [233, 351, 591, 805].

F. Thermal and circadian measurements

It is well documented that there is intramuscular
temperature dependency on muscle force genera-
tion [67, 147, 194], and the core body temperat-
ure (CBT) exhibiting a circadian rhythm with an
amplitude approximately 1◦C. The CBT is typ-
ically highest during the afternoon and lowest in
the early morning depending on the intrinsic phase
of the individual [34, 439, 542]. Some have even
claimed muscle temperature to be probably the
most important factor in determining the out-
come of exercise performance [234, 649]. How-
ever, it is unclear, how much the circadian rhythm
per se, generated by 'master circadian oscillator'
suprachiasmatic nucleus (SCN) [306], in relation
to downstream signals such as temperature, drive
the time-of-the-day changes in strength [53, 194]
and athletic performance in general [495, 644].

Edwards et al. [206] showed that passive
heating and increased humidity was not su�-
cient to increase strength suggesting some that
other intrinsic changes within muscles occur dur-
ing the day. Some animal studies have sugges-
ted that passive heating (e.g. sauna) can stimu-
late muscle hypertrophy [685], and how it could
be used as a mimetic for exercise especially in
clinical populations. In �circadian free-running'
blind people who are not entrained to the environ-
mental light-dark cycle, it was shown that isomet-
ric and isokinetic contraction strength perform-
ance mirrored the intrinsic circadian phase of these
people, further demonstrating the intrinsic circa-
dian drive in strength production [764]. Zhang et
al. [914] showed how maintaining a normal circa-
dian rhythm [341], e.g. regular sleep/wake cycle,
can be bene�cial for stimulating skeletal muscle re-
pair to prevent or alleviate skeletal muscle atrophy
(catabolism).

Thus, it is important to have estimates of the
individual circadian phase, core body temperature
and muscle temperature during exercise, to better
understand the intra- and inter-individual variab-
ility to exercise [644, 683]. One could even ar-
gue that all the measures reviewed in this review
exhibit a circadian modulation, even if the circa-
dian modulation would not yet had been explicitly
studied and reported. Additionally, the menstrual
cycle phase in females modulates body temperat-
ure variations di�erently from the circadian drive
[440], further complicating the analysis of female
athletes.

Rectal temperature recording is considered gold
standard in CBT measurement [542], limiting its
use for continuous measurement in active athletic

population, thus various alternative methods to
measure CBT have been proposed. The use of
commercial wearable skin surface thermometers
called iButtonsR© worn on multiple locations on
body has probably been the most used alternative
for rectal measurements [305]. Measurement with
iButtonsR© traditionally required multiple meas-
urement locations, with recent research devoted
on reducing this requirement with development
of mathematical modeling [208, 427], even going
down to single-site measurements from wrist [521],
�nger [510], and chest with a wearable patch [652].

These continuous and invisible temperature
measurement could be used as real-time proxy
measurement of changes in circadian phase [167,
190, 301, 330, 772, 849], i.e. assessing at what hour
the individual athlete's performance peaks allow-
ing individualised training times [196, 277, 727],
assessing the e�cacy of anti-jetlag interventions
when having to compete on a di�erent time zone
[669], and facilitating general monitoring of stable
circadian entrainment to environmental light/dark
cycle [205, 475, 691]. Similar to the challenges
in CBT measurement, measuring muscle temper-
ature has been traditionally time-consuming and
cumbersome, with novel methods such as insu-
lation disk (INDISK) techniques being proposed
to make muscle temperature measurement easier
while still physiologically valid [92, 234].

The multisite temperature recording with wear-
able iButtons R© for distal-proximal skin temper-
ature gradient (DPG) measures, and for quanti-
�cation balance between core and skin temperat-
ure [438], can be also approximated optically with
non-contact imaging infrared thermography [559].
Imaging infrared thermography have been used in
few sports science studies, e.g. for prediction of
body part speci�c injuries [162, 271], as a non-
invasive marker for delayed onset muscle soreness
(DOMS) [641], and as a measure for activation of
motor units in Olympic weightlifting [450].

For sports applications, the recent advances in
functional optical �bers [130], could allow smart
compressive garments of the future to provide
continuous temperature measures for estimation
of core body temperature, DPG and intramus-
cular temperature. Example of such a sensor
was developed by Guo et al. [284], who demon-
strated a prototype system for real-time meas-
urement of bicep temperature during dumbbell
curls. Such a wearable �bre-optic system with
non-thermal modalities is demonstrated in Light
LaceR© smart garment from Organic Robotics (ht-
tps://www.organicroboticscorp.com/), that integ-
rates measurements of motion capture, muscle
activity and respiration into a single garment [894].
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G. Brain Imaging

Athlete's focus, fatigue levels, and 'mind-
muscle' connection [326, 624] can be monitored
in sports application with portable brain imaging
techniques such as dry electrode electroencephal-
ography (EEG) [244], or functional near-infrared
spectroscopy (fNIRS) [325, 436]. EEG studies
have shown how the most fatiguing strength train-
ing protocols were associated with greatest in-
crease in cortical activity [232]; how during ec-
centric contraction, prefrontal cortex seemed to
be more involved in the regulation of cortical mo-
tor drive compared to isometric and concentric
contraction [311]; and how focusing attention on
muscle exertion can increase EEG coherence in
a cycling task [243]. Recently a magnetic reson-
ance imaging (MRI)-compatible foot pedal device
was developed allowing also functional MRI stud-
ies for lower extremity movement [192, 281]. Addi-
tionally, the mental load quanti�cation from brain
imaging might be useful if the weight training with
biofeedback is implemented in VR [228, 648], and
the mental load could be used to modulate the
weight training complexity [263], as done in clin-
ical applications for gait rehabilitation [398].

H. Biochemical biomarkers

In addition to the electronic measurement tech-
niques outlined above, athletes can be mon-
itored for muscle damage and recovery status
[135, 618], using numerous biochemical and multi-
omics measures [582], sampled from blood, urine
or sweat. The sweat-based sampling is the most
invisible for the athlete as the developed sensors
are typically small [41, 265], around the size of a
typical bandage [802]. Lactate and ammonia levels
are probably the most interesting for strength
training purposes. Lactate levels can be used
to track metabolic fatigue and ammonia for as-
sessing neuromuscular fatigue [697]. Additionally,
both can be used to track acute recovery between
training sets. One of the main remaining chal-
lenge in sweat-based sensing has been to ensure the
validity between sweat and blood concentrations
[255, 668, 910], with recent non-commercial proto-
types showing promising results in providing high-
quality real-time measures of various biomarkers
(including lactate and ammonia) [802, 910]. Imani
et al. [353] co-fabricated electrochemical lactate
sensor and electrophysiological ECG sensor on the
same �exible substrate to be mounted on a skin,
demonstrating how multimodal wearable sensing
systems are feasible even today, and how even
more comprehensive sensor solutions could be fab-
ricated in the future.
Hormonal sampling is relatively common in

strength training studies, including hormones such

as testosterone, human growth hormone (HGH),
cortisol, insulin-like growth hormone (IGF-1),
cortisol and 17β-estradiol [437]. Male sex hor-
mone, testosterone [672] is the most frequently
used hormone in strength and hypertrophy stud-
ies because of its ability to increase muscle mass
even in males who do not do resistance training
[76]. As a result, its use is considered as doping in
professional sports, and therefore banned in com-
petitive sports [886]. Endogenous testosterone ex-
hibit circadian [309], circannual [274] and acute re-
sponse to heavy training in both men and women
[337, 843]. Absolute testosterone levels [681, 682]
and acute testosterone response to strength train-
ing [484] being lower in females compared to males.
The individual circadian pro�les (see III F above)
in testosterone levels [309], can be used to optimise
time-of-the-day for strength training for optimal
hypertrophy and strength gains.
Female athletes need to consider their menstrual

cycle for training programming [622, 682, 687],
among other gender di�erences [318, 682]. Follicu-
lar phase typically allows larger strength gains and
more hypertrophy [781, 872], while during luteal
phase the recovery times from training can be pro-
longed [515]. The use of hormonal contraceptives
does not seem to a�ect the strength performance
in physically active women [572].
The intradaily variation of testosterone levels

highlight the need of continuous measurement
technology [165], with no wearable solution
available at the moment, and, gold stand-
ard being based on blood sampling with li-
quid chromatography�mass spectrometry (LC�
MS) analysis [110, 157]. Preliminary evidence
on electrochemical sensors suggest that in near-
future, wearable sensing systems could exist for
sampling steroid hormones such as cortisol [735,
913], 17β-estradiol [793] and testosterone [13].
Creatine kinase (CK) monitoring has been the

most commonly used biomarker for assessing
muscle damage and recovery, mostly due to its ease
of identi�cation and low cost of assays [425]. Total
serum CK activity is typically elevated for 24 h
after the exercise, and returns to baseline levels
with rest. If the CK levels remain high at rest, a
full diagnostic workup should follow for the athlete
[93]. The practical problem arises with the de�ni-
tion of �high� CK levels, as total CK levels depend
on age, gender, race, muscle mass, hydration level,
physical activity, and climatic condition [93]. Ad-
ditionally, athletes have large inter-individual CK
response di�erences to the same exercise, further
complicating the analysis of CK levels for recov-
ery status [93]. Other biomarkers, which can be
analysed for exercise recovery include transform-
ing growth factor beta 1 (TGF-β1) [408], oxylipin
[744], brain-derived neurotrophic factor (BNDF),
oxygen reduction potential (ORP, redox potential)
[647], cell-free DNA (cfDNA) [60], and neutrophil
phenotypes [762].
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In the emerging �eld of multi-omics [9, 131,
918], relatively little research has done on exer-
cise physiology [187, 564, 582]. Knab et al. (2020)
[422] showed how proteomic markers from �nger-
pricked blood sample could be used to predict the
athlete stress and athlete-reported illnesses such
as upper respiratory tract infection. Kim et al.
(2020) [409] suggested that myostatin A55T geno-
type was associated with quicker strength recovery
following exercise-induced muscle damage. The
recently formed Molecular Transducers of Phys-
ical Activity in Humans Consortium (MoTrPAC)
[700] being one of the most ambitious research pro-
grams on the use of omics in exercise physiology.
MoTrPAC will attempt to better de�ne omics re-
sponses to chronic exercise training at varying ex-
ercise intensity levels and exercise modalities.

In general, athlete monitoring would bene�t
from continuous noninvasive blood sampling [635],
as is the case with other measures reviewed here,
to better capture the intra-day and long-term
variations both within and across athletes. In
the future, low-cost continuous noninvasive blood
sampling [635] could be done routinely along with
automatic gut microbiome analysis [347, 582, 629]
with �smart toilet'-type systems [613].

I. Subjective measures

In addition to reviewed objective measures,
there is tremendous values in asking the athletes
themselves to rate the quality of their training ses-
sions, recovery status, and general wellbeing. In
the systematic review by Saw et al. [708], it was
shown that subjective measures such as mood and
perceived stress were shown to outperform blood
markers and HR when used as stand-alone meas-
ures of sports performance. The authors sugges-
ted though that the subjective measures should be
combined with more objective measures, and one
should not rely solely on subjective measures that
might have their own issues with bias and data
quality [107, 369].

The rating of perceived e�ort (RPE) on a
scale from 1 to 10 [87, 295, 434, 522], and its
strength training speci�c RPE scale repetitions

in reserve (RIR) [48, 824, 933], which estimates
how many repetitions you believe you could
have done before reaching a technical failure
within a set, are probably the most commonly
used subjective measures in strength training.
These measures are found in advanced gym
logger such as GravitusR© (https://gravitus.com/)
[314] or Reactive Training Systems'R© web app (ht-
tps://www.reactivetrainingsystems.com/AppHome).
Helms et al. [320] for example showed that RPE
was an useful tool for prescribing training intens-
ities for powerlifters, in addition to traditional
methods such as percentage of 1RM. Larsen

et al. [457] also found the subjective markers,
especially when combined with objective velocity
markers [123], were useful for strength training
programming and monitoring. These �ndings
highlight the necessity of subjective measures in
precision strength training frameworks for better
understanding of the full biopsychosocial pro�le
of the athlete [160, 809].
However, as all subjective measures, RPE scales

have their methodological shortcomings [295], and
for example Halperin et al. [295] argued that
RPE should be accompanied by other subjective
measures of a�ect, fatigue and discomfort, among
other measures. The authors proposed the Feel-
ing Scale (FS) , for a�ective valence in resistance-
trained participants with preliminary for real-word
use [295] and warranting more detailed followup
studies [213]. However, the use of RIR is limited
to advanced elites, as its e�cient use depends on
the ability of athletes to predict maximum e�ort
and being able to separate the perception of e�ort
from actual e�ort [767], which has been proven to
be challenging to intermediate-level lifters [32].

IV. DATASETS FOR STRENGTH
TRAINING

In order to build data-driven precision strength
training models, strength training speci�c datasets
need to be acquired �rst, with relevant modalities
and data quality high enough for human move-
ment studies [575, 728]. Currently, no large-scale
open-source exercise dataset, or let alone strength
training dataset exists (�gure 4A), thus we will
introduce the concept of self-supervised learning

and how to use existing datasets and pre-trained
models for custom datasets (�gure 4B). Finally, a
short overview of technical details relevant for cus-
tom dataset acquisition is presented in �gure 4C).

A. Datasets for exercise and physiotherapy

To the authors' knowledge, no large-scale open-
source databases exist for the development of
strength training speci�c deep learning models.
Thus we will review here the existing datasets
for generic action recognition models, containing
sports activities, physical rehabilitation and the
small strength training datasets. Kinematic skel-
eton databases derived from RGB(-D, D for depth
channel) video are the most common type of data-
set available [915]. The largest and most fre-
quently used datasets for benchmarking datasets
for deep learning model development3 are NTU

3https://paperswithcode.com/task/skeleton-based-
action-recognition
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Figure 4. Process of re-purposing available large-scale datasets such as NTU-RGB-D 120 [486] for sports and
strength training deep learning development. (A) Large-scale action recognition dataset NTU-RGB-D 120 con-
tains skeleton data of everyday activities which can be used as an initial pre-trained model (B) using recent
self-supervised learning approaches that are shown to learn good generic features [932], to be used for �netuning
with smaller domain-speci�c datasets (e.g. KIMORE [111], MoVi [267], Learn to Move [758]) for your desired task.
Semi-supervised learning refers to the 'unlabeled' generic datasets that has no sports-speci�c labels necessar-
ily that are used to supervise the �ne-tuning. Physiotherapy datasets such as KIMORE [111] could be used to
quickly develop physiotherapy movement assessment models with the self-supervised approach [782], and as no
open-source strength training dataset is available, one could capture kinematic data with multiple cameras with
di�erent quality levels for example (C). The multiple views reduce the self-occlusion and joint location uncer-
tainty and multiple quality levels allow the simulation of low-quality deployment hardware. After the acquisition
of this initial dataset, one wants to continuously acquire new data from more athletes to continuously improve
the model and validate the performance of the model.

RGB+D 60 [733, 807], NTU RGB+D 120 [486]
and Kinetics-Skeleton [393, 897], all captured with
Kinect [14, 148, 626]. The exercise-speci�c data-
sets are considerably smaller and are mostly ac-
quired for clinical physiotherapy purposes [477]
(see table I), but these datasets could be pooled
together as a base dataset for sports speci�c mod-
eling (�gure 4A). It should also be noted that none
of the published datasets seem to contain longit-
udinal recordings for developing athletic training
progression models and assessing intra-individual
variability.

Capecci et al. [111] published the KIMORE data-
set recorded with KinectTM consisting of physical
rehabilitation body weight exercises recorded with
a total of 78 subjects from �ve di�erent patient
groups: 1) healthy, experienced in exercises; 2)
healthy, non-experts; 3) stroke rehabilitation; 4)
Parkinson's disease; 5) low back pain. Leightley et
al. [469] published quite large dataset K3Da con-
taining 54 subjects performing 13 di�erent stand-
ardised tests for physiotherapy. AHA-3D dataset
[24] contains 21 subjects, both young and elderly
subjects, performing body weight exercises. Par-
isi et al. [606] collected a dataset consisting of 17
volunteers performing high bar back squats, dead-

lifts and dumbbell lateral raises, but the dataset
was not made public. Cuellar et al. [170] pub-
lished physical therapy diagnosis exercises with
10 subjects acquired with Kinect. University of
Idaho � Physical Rehabilitation Movements Data
Set (UI-PRMD) [834] consists of 10 healthy subjects
performing rehabilitation exercises such as deep
squat, hurdle step and sit to stand captured both
with KinectTM V2 and ViconTM Optical track-
ing system. Home-based Physical Therapy Exer-
cises (HPTED) consist of only 5 subjects performing
shoulder and knee exercises [25]. Militaru et al.
[549] collected a dataset small 2,400 image KaiaTM

-style [815] dataset to train a form correction net-
work for plank and holding squat.

For accelerometer-based data, Ebert et al. [203]
published a dataset consisting of 8 di�erent body
weight exercise with 26 subjects encompassing
more than 11,000 exercise repetitions in total, and
Taylor et al. [797] published dataset with 3 gym
exercises using 9 knee osteoarthritis patients. Re-
iss and Stricker [665] recorded HR with IMU data
for 9 subjects performing physical activities. Kwon
et al. [451] addressed the lack of modality-speci�c
training data with their IMUTube system that can
convert YouTube videos of human activity into vir-
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Table I. Datasets published for body weight physiotherapy exercises, and gym-based exercises with weights.

Dataset Year Modalities Exercise types n ExercisesMulti-
modal

AvailableRef

2006 EMG Squat 9 3 − − [584]
2010 Accelerometer Gym exercises 9 3 − − [797]

PAMAP 2012 IMU, HR Everyday activities 9 18 − � [665]
HPTED 2014 KinectR© Physiotherapy 5 8 − � [25]
PReSenS 2015 KinectR© Physiotherapy 10 2 − − [170]

2015 KinectR© Gym exercises, incl
squat and deadlift

17 3 − − [606]

K3Da 2015 KinectR© Physiotherapy 54 13 − � [469]
EmoPain 2016 Face videos,

KinectR©, EMG
Physiotherapy 50 11 � � [37,

207]
2017 IMU Body weight gym

exercises
26 8 − � [203]

MyoGym 2017 EMG Gym exercises 10 30 − � [431]
UI-PRMD 2018 KinectR©, ViconR© Physiotherapy 10 − � [834]
AHA-3D 2018 KinectR© Physiotherapy 21 4 − � [24]
KIMORE 2019 KinectR© Physiotherapy 78 5 − � [111]

PennAction

subset
2019 RGB video Squat ? 1 − � [845]

2020 Smartphone Physiotherapy ? 2 − − [549]
MoVi 2020 IMU, QualisysR©,

smartphone,
industrial camera

Everyday activities 90 21 � � [267]

EV-Action 2020 KinectR©, ViconR©,
EMG

Everyday activities 70 � � [856]

MM-Fit 2020 RGB-D video,
Smartphone IMU,
smartwatch, earbud

Gym exercises 10 10 � � [774]

2020 Raptor-ER© mocap Movement screens 417 21 � − [91,
149]

EMG electromyography, IMU inertial measurement unit. KinectR© is an example of low-cost motion capture
system, and ViconR©/QualisysR©/Raptor-ER© of 'gold standard' level motion capture.

tual streams of IMU data, i.e. synthetic kinematic
training data that you could acquire from strength
training videos available in abundance.

Ghorbani et al. [267] published an interest-
ing multimodal dataset MoVi that contained both
IMU and kinematic data of sports movements from
a total of 90 subjects, 60 females and 30 males.
Koskimäki et al. [431] published MyoGym dataset
containing 10 people doing 30 di�erent gym ex-
ercise wearing the sEMG MyoTM armband [431].
Wang et al. [856] combined kinematic data from
ViconTM and KinectTM V2 with electromyography
(EMG) for their EV-Action dataset and recor-
ded 70 subjects performing various actions, not
all sports speci�c. Vyas [845] had used 391 squat-
ting images from PennAction [917] to train an ac-
tion recognition model for detecting squat exercise.
Stömbäck et al. [774] introduced MM-Fit dataset,
which was collected using IMUs on smartphones,
smartwatches and earbuds worn during gym exer-
cises.

The use of movement screens [441] (e.g. Func-
tional Movement Screen, FMSTM, Functional
Movement Systems, USA) has been increasing,
especially in sports talent identi�cation in ma-
jor US sports leagues such as NBATM, NFLTM,
NHLTM and MLBTM, often with very subject-

ive assessment [530]. Recently, more quantitat-
ive and objective athlete approaches have emerged
for whole-body movement phenotyping [470, 666,
688]. Clouthier et al. [91, 149] studied a propriet-
ary dataset acquired from 417 athletes, each per-
forming movement tests consisting of 21 unique
movements. The authors showed how deep learn-
ing seems promising in automating the assessment
of movement screens. These types of movement
screen datasets, if made public, would be very
valuable for sports, physiotherapy and ergonom-
ics assessments.

For musculoskeletal modeling purposes, �Grand
Challenge to Predict In Vivo Knee Loads� [239,
412] and �Comprehensive Assessment of the Mus-
culoskeletal System� (CAMS-Knee) [798] provide
very specialised datasets for modeling knee con-
tact forces (KCFs) using ground reaction forces,
kinematics, EMG, computed tomography (CT),
and stationary �uoroscopy data. Imani Nejad et
al. [354] studied the di�erence between OpenSim

model predictions and actual measurements from
CAMS-Knee, and highlighted the subject-speci�c
variability in musculoskeletal predictions. The
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dataset of �Learn to Move� competition4 is not dir-
ectly on sports movement. However, the task is to
develop a deep reinforcement learning controller
for 3D human musculoskeletal model, which could
be extended to sports and clinical use in the future
[758].

B. Finetuning existing datasets for strength
training

In deep learning it is a common practice to take
a pre-trained model, initially trained on a large-
scale generic dataset such as ImageNet [96, 185,
779, 908], which contain natural images of di�er-
ent dog breeds and �owers. Then, the pre-trained
model is repurposed to a custom task with only
little data available via �ne-tuning (also referred
as transfer learning) [38, 137, 570]. Previously the
preferred ways for �ne-tuning models have been
either pre-training the model from scratch using
unsupervised learning and then freezing some of
the network layers and continuing model train-
ing with supervision from your own dataset labels
[904], or taking the pre-trained model and freezing
all layers but the last layer [264, 512].
Recently, these approaches have been replaced

by �ne-tuning with self-supervised learning (�g-
ure 4B) [38, 134, 278, 370, 424, 791, 921, 932].
In practice self-supervised learning is between un-
supervised learning, in the sense that humans do
not need to annotate anything, but the learning is
supervised with automatically created supervision
labels. For example in Bootstrap Your Own Lat-
ent (BYOL) approach [278], the supervision targets
are synthetically augmented (algoritmically distor-
ted) versions of the input data [65], allowing the
network to learn representative features from the
large-scale dataset.
Spathis et al. [760] used HR as the (self-

)supervisory signal for activity data, to learn
human activity recognition (HAR), and demon-
strated �rst multimodal self-supervised approach
for lifestyle monitoring outperforming unsuper-
vised autoencoders [695]. For pose estimation
and future pose prediction, Suris et al. [782]
pre-trained �rst the model on larger Kinetics

dataset [393], and then �ne-tuned the model on
a smaller FineGym dataset [734]. They showed
how smaller movement dataset can bene�t from
an initial self-supervised pre-training �rst on a
larger dataset [932]. This type of training in-
volving both task-speci�c (labelled) and generic
(unlabelled) data, is referred as semi-supervised
training [214, 731, 794].

4NeurIPS 2019: Learn to Move - Walk Around
https://github.com/stanfordnmbl/osim-rl

C. Creating your own custom dataset

With the lack of strength training speci�c data-
sets, even the development of proof of concept pre-
cision strength training model will require for the
sports scientists to acquire a novel custom data-
set. Proof-of-concept powerlifting dataset could
contain longitudinal trend over a mesocycle (e.g.
4 weeks with 3 weeks of progression, and 1 week
of deloading); intra-individual variation during one
set, one exercise, one session; and inter-individual
variation between athletes for the same exercise
prescription in order to capture the information
related for the sport in question [876].

The exact technical measurement setup depends
on the project resources, but could contain at least
kinematic, kinetic, activation and morphological
characteristics (III) giving a more complete view
of the athlete's training progress (i.e. multimodal
model [145, 858]). The multimodal dataset would
also allow the use of classic musculoskeletal model-
ling techniques [227, 407, 465, 630, 709], and more
recent deep reinforcement learning musculoskeletal
models [758] for strength training purposes (�g-
ure 4C). With all the modalities recorded, it is
then possible to simulate measurement conditions
when not all the modalities are available. This
would give an opportunity to demonstrate the rel-
ative importance of di�erent modalities [146, 657],
how missing data could be generated or handled
[289, 290, 331], and how these a�ects your model's
performance. One could additionally include mul-
tiple devices of the same modality at various qual-
ity levels [384, 448, 759, 783, 920], enabling the
quanti�cation of data quality to model perform-
ance, e.g. replacing a high-end motion capture
system such as Optitrack/Vicon [817] with a Kin-
ect or a smartphone to evaluate how it would a�ect
the model performance [14, 540].

Attention should be paid into optimising the
quality and ease of use of the data annotation
pipeline [150, 346], e.g. the spatiotemporal quality
of joint locations [575, 728] or temporal segmenta-
tion of individual repetitions and during exercises
[75, 183, 360, 688, 774, 833, 857]. In sports labor-
atory conditions, the uncertainty of body pose es-
timation uncertainty could be mitigated by the
use of extra infrared retrore�ective straps as �du-
cial markers [128, 156, 230, 405], while the general
trend however has been towards markerless motion
capture systems [120, 256, 575, 739]. In practice,
the use of additional markers is cumbersome for
the athlete, and can even increase measurement
uncertainty with KinectTM [573, 786]. Colombel
et al. [153] recommended the use of miniature
markers with a diameter of 2.5 mm to reduce the
interference with KinectTM Azure.

It should also be noted that, KinectTM v2 en-
codes the spine in the skeleton with just 3 joints
[870], which might limit the assessment of lumbar�
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pelvic movements (LPM), e.g. the �butt wink�
in powerlifting jargon during squat that may load
speci�cally L5-S1 joint [204]. LPM analysis is of
a particular interest with low back pain patients
[702, 822]. The assessment technology for low back
pain, such as recently proposed low-cost electronic
skin sensors [919], could be used in strength train-
ing and physiotherapy research. [22].

In KinectTM-based systems it is common to
use multiple devices simultaneously to capture
the athlete from multiple angles (multiview cap-
ture) to reduce self-occlusion and joint location
uncertainty [14, 184, 372, 710, 770, 816]. How-
ever, in practice the system often would like to
be deployed to �eld with just a single Kinect or
a smartphone camera [746, 775]. Depending on
the application, the single KinectTM might not
be provide su�cient joint angle resolution, with
Colombel et al. [153] demonstrated the side place-
ment of KinectTM Azure devices to giving better
signal �delity over front-facing device. As an ex-
ample from hand tracking research for VR, Han et
al. [300] used 16 separate cameras to obtain the
highest hand joint location ground truth. High
quality dataset acquisition, with multiple views,
modalities and data quality levels, might also help
with designing better data augmentation tech-
niques [124, 182, 449, 491, 703], pre-trained net-
works [853], and defence for adversarial attacks
[609], to further improve deep learning perform-
ance with small datasets.

1. Continuous learning

The researchers should be prepared for the con-
tinuous data acquisition, i.e. the iterative improve-
ment of the trained model. In hospitals where
the new data is continuously acquired �for free�
from patients, but the labelling/annotation of the
data by human experts is expensive, active learn-

ing systems are frequently used [223, 417, 490].
These systems attempt to predict the most useful
(i.e. not a typical patient already found within
a labelled dataset) unlabeled data to be labelled
by humans for maximising model performance
[98, 200, 553]. In strength training, analogous
situation could occur when routinely only the kin-
ematic data of every monitored athlete in a given
training centre is being recorded, and in the occur-
rence of any anomalous movement patterns would
be tested (compared to existing dataset, i.e. exhib-
iting high epistemic uncertainty [266, 366]), other
modalities such as kinetic, activation, and mor-
phological parameter would also expect to be an-
omalous and therefore, valuable to be included to
the labelled dataset to increase the generalisation
capability of the model [201, 506].

When one disseminates the knowledge from the
updated model to practice, and from practice

back to modeling, these systems are referred to
as �learning health systems' [533, 585]. Similarly
one could hope that in the future, learning pre-

cision strength training systems would be intro-
duces, in which the developed strength training
models would in�uence strength training practice
in the �eld, and the training practice would in�u-
ence the work of model development for strength
training [865].

Lifelong, or continual learning is a concept often
used in autonomous robotics, in which the robot is
able to �ne-tune its own performance continually
through its experience [291, 608, 837]. In phys-
ical rehabilitation and in athletic training such a
situation could occur with a robotic coach learn-
ing the correct movement from physiotherapist via
imitation [3, 518], and eventually becoming an
autonomous robotic physiotherapist or personal
trainer [660], able to help in at-home exercise.
Such robotic systems could be pooled together in a
federated learning framework, where the training
would be decentralised [676, 706, 895, 899, 903],
and the individual robots would be considered
as �smart edge devices' [552, 800]. Conceptually,
this type of distributed system would allow, the
heterogeneous coaching style to be pooled into
the same model, without the coaches or sports
teams/institutes having to give ownership of the
data to a model aggregator [823]. The model ag-
gregator, could then be the device manufacturer
providing the technology for athlete tracking, or
athlete management system (AMS) provider as at-
tempted by Google DeepMind with their Streams
EHR for clinical care [638].

The third, similarly sounding concept to the pre-
vious ones, is continuous delivery, that refers to
software engineering practices to foster automa-
tion and, quality and discipline to create work�ow
for deploying software into production [178, 723,
925]. Often academic studies, are mostly inter-
ested in developing new proof-of-concept models,
with little thought on real-life software translation
and the engineering modules needed for deploying
these to �production' [725]. The �eld focused on
improving these deployment practices is referred
as MLOps, aiming to unify machine learning (ML)
system development (ML + Dev) and ML sys-
tems operations (Ops). The concept of MLOps
is derived from DevOps that is commonly used
software engineering practice making software pro-
duction and deployment automated and repeat-
able. What sets MLOps apart from DevOps, is
how data and code is managed jointly, as new data
can change the behaviour of the system (Software
2.0 [553, 869]), whereas in contrast to DevOps in
which the program code de�nes solely the function
of the system [251].
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V. DEEP LEARNING ENABLED
EXERCISE AND STRENGTH TRAINING

The majority of deep learning studies and star-
tups have targeted recreational gym-goers [145,
850]. For example, algorithms and models have
been developed for exercise recognition [401, 587,
646, 651, 747], automatic training diary logging
[359, 403, 774], repetition counting [27, 639], ad-
herence monitoring [103], and real-time exercise
technique evaluation and correction [117, 133, 254,
349, 371, 372, 589, 607, 610, 845, 900]. The
technique assessment models (or motion similar-
ity models [726, 835]), are the most relevant from
these models for our precision strength training as-
sessment for kinematic assessment of the athlete.
Notable weight training startups [312] include
for example TonalTM (https://www.tonal.com/),
TempoTM (https://tempo.�t/), and KeepTM (ht-
tps://www.keepkeep.com/).

Tonal's digital weight system with program-
mable resistance over the single movement itself
[191, 410, 414] is the most interesting of these for
precision strength training purposes. One could
replace the use of physical chains [583, 846] and
elastic bands [19, 202, 381, 447, 516, 662] with
digital programming of load changes during one
repetition for improving the athlete's lift �stick-
ing points' [429]. Additionally, given an accur-
ate enough individualised neuromuscular model,
one could detect fatigue over the training session
and dynamically adjust the load for the athlete,
e.g., when the training is programmed with RPE
[321, 443, 457] (see III I) or velocity loss targets
[861, 862] (see VA1). This type of a real-time ad-
aptive system could be used as an input for gami-
�ed exergames such as StrengthGaming [453], for
the clinical rehabilitation and general population
to make the training more fun, especially for indi-
viduals with adherence issues.

A. Powerlifting: example sports for precision
strength training

Algorithmic approaches speci�cally for elite-
level S&C, and competitive strength sports
are more scarce than for recreational use (see
for example JuggernautAITM in section �I).
Strength sports involve sports as powerlifting
[670], Olympic weightlifting [759], bodybuilding
[17], CrossFitTM[520], strongman competitions
[334], arm wrestling and grip sports. Powerlift-
ing seems the most suitable sports from these to
illustrate the concept of precision strength training

in practice.

In powerlifting [225, 320, 821], the goal is to pro-
duce maximum force, in a relatively long time win-
dow [829], in the three powerlifting lifts: squat
[154, 390], bench press [605, 876] and deadlift

[217, 390]. The e�ect of lifting technique per

se to the amount of load lifted is smaller in
powerlifting compared to the e�ect of lifting tech-
nique in Olympic weightlifting [670]. This sim-
plifying the performance monitoring, as the lif-
ted weights re�ect more closely the strength per-
formance with less e�ect from variations in lifting
technique. In Olympic Weightlifting, the rate of
force development (RFD) is higher than in power-
lifting [829, 911], i.e. how explosively the move-
ment is executed, in practice also requiring faster
motion cameras than powerlifting. Bodybuilding
aims to maximise muscle mass (hypertrophy) with
less focus on strength performance [17, 555], and
the quanti�cation of muscle mass changes is less
straight-forward [308]. Hypertrophy studies would
require muscle biopsies and more advanced ima-
ging techniques to properly quantify the progres-
sion of the athlete [1, 505].
Additionally, powerlifting lift variants are very

commonly used by recreational gym-goers and
S&C coaches for non-strength sports, making the
analysis of powerlifting generalise well to mul-
tiple sports. However it should be noted, that
not all sports necessarily bene�t from powerlifting-
type of strength training, i.e. the strength gains
do not necessarily transfer to improvements in
sports performance [532, 778, 905, 906]. For ex-
ample, sports requiring explosive power such as
boxing [498, 765], taekwondo [485], track and
�eld sprinting [307, 500], and mixed martial arts
(MMA) [317, 367, 416, 433, 472, 888], often bene-
�t more from ballistic/plyometric training with a
goal to improve athlete's explosive strength cap-
ability [829].
Sjöberg et al. [748] conducted an interesting

study, with a group of 3 national level Swedish
powerlifters, who compiled list of lifting technique
issues in squat and deadlift, with relevance for the
risk of injury. This list was then evaluated by
14 domain experts consisting of coaches, research-
ers and competitors within International Power-
lifting Federation (IPF), resulting in a new pro-
tocol for evaluation of lifting technique. This
could be interpreted as the �rst step of establish-
ing and evidence-based recommendations regard-
ing safe technique in the powerlifting squat and
deadlift, and as a qualitative human expert basis
to train deep learning networks on movement as-
sessment. The level of inter-rater disagreement
and �collective intelligence� [650] between the 14
domain experts furthermore would allow the quan-
ti�cation of uncertainty in lifting assessment, a
probabilistic aspect typically desired in deep learn-
ing for safety-critical applications such as health-
care [77, 366, 382, 428, 659, 792].
In powerlifting, it is well known qualitatively

that body dimensions a�ect lifting techniques,
i.e. how the anthropometric properties of the
athlete will a�ect the de�nition of 'correct form'
[142, 226, 603, 839, 842]. This obviously complic-
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Figure 5. The de�nition of �gold standard' movement
execution is complicated by anthropometric variabil-
ity in athletes. (A) The athlete with shorter femur
compared to trunk, can squat more upright, more eas-
ily deeper, and closer to the �textbook standard� of a
good squat, whereas the athlete with long femurs has
more forward tilting and more cantilever. The athlete
with long femurs can try to make the squat deeper for
example by placing a block under the heels or using a
wider foot stance. In practice, an automatic analysis of
squat technique is further complicated by di�erences in
ROM, ankle/hip mobility and tendon/muscle sti�ness
that we would like to capture for continuously. (B) In
computational models such as in the one developed by
Ryu et al. [693], it is in theory possible to distinguish
these factors, and potentially use it as a framework
for athlete monitoring for more �ne-grained analysis
of technique issues.

ates the development of deep learning models for
real-time and o�ine movement analysis of lifting
technique, and increases the data volume require-
ments (e�ect size, see e.g. [720, 751] for e�ect size
approximations in deep learning) to capture the
inter-individual di�erences. Anthropometric de-
pendence in Olympic weightlifters was also demon-
strated with kinematic data, with the lifters suc-
ceeding in competitions with very heterogeneous
lifting techniques [171]. In addition to static meas-
ures such as trunk/thigh length ratio [246] (5),
it might be useful to quantify measures such as
ROM [636], tendon sti�ness [270], and ankle mo-
bility [246] dynamically in real-time to better un-
derstand the dynamic changes during one session
and over multiple sessions in movement technique.
Additionally, one need to consider the age of the
athlete, as deep squat hip kinematics in young ath-
letic adults seem to di�er substantially from older
and non-athletic subjects [342].
To the knowledge of the authors, no quant-

itative frameworks have been developed to ad-
dress the issues of anthropometric variability in
lifters for exercise analysis, beyond the sugges-
tion of Cholewa et al. [142] for athletes with
greater torso to total length ratios to favour sumo-
style deadlifts over conventional style. In prac-
tice, the inherent ambiguity in de�nition of cor-
rect form could be modelled for example with deep
reinforcement learning (DRL), which have been
used medical modeling problems when the exact
ground truth is unknown and/or hard to estimate
[576, 640, 855]. The developed video-based auto-
matic kinematic assessment could be also used by
powerlifting organizations such as IPF to quantify

squat depth in real-time, and possibly automat-
ing squat depth assessment and reduce subject-
ive judging bias from powerli�ting meets (com-
petitions in powerlifting jargon) [108, 546, 596].
Additionally, the same computer vision techniques
could be used in making powerlifting or strongman
competitions more spectator-friendly sport with
improved sports visualisation [84, 656].

1. Velocity-based training (VBT)

Recently, velocity-based training (VBT) and the
commercial products related to it have become
increasingly popular. VBT is a contemporary
method for prescribing strength training based on
load/force-velocity curves [481, 557, 861]. One
possible application of VBT in training monitor-
ing (see section �II), is to record the velocity of the
barbell at di�erent loads (e.g. 45-55-65-75-85% of
1RM [623]), and use load-velocity curve for the
estimation of 1RM [116, 623] (�gure 6), without
the athletes having to actually lift the 1RM, which
would be often counterproductive and increase risk
of injury. Mean concentric velocity (MCV) is the
most commonly used metric in VBT. As demon-
strated by Williams et al. [876] the changes in
MCV seem to be more sensitive indicator of neur-
omuscular fatigue compared to measures of max-
imal strength production. In other words, the use
of VBT could potentially be used to track the in-
ternal load of the athlete (see section �II), rather
than tracking repetitions done at speci�c loads
over the training cycle.

The research interest in VBT has been re-
�ected in the amount of companies o�er-
ing solutions based on custom camera sys-
tems, smartphone cameras, linear transducers
or IMUs to measure the velocity of execu-
tion. Camera systems are o�ered by com-
panies such as PerchTM (https://perch.�t/)
and GymAwareTM (https://gymaware.com/) [594,
860]; IMU systems by PUSHTM band (ht-
tps://www.trainwithpush.com/) [122, 138]; and
smartphone applications by My LiftTM [47, 519],
iLOADTM [694], PowerLiftTM [46] and Iron
PathTM (http://www.theironpath.com/) [391];
and open-source approaches by Kinovea (ht-
tps://www.kinovea.org/) [373] and Open Barbell
(http://squatsandscience.com/) [272] from Re-
pOne StrengthTM (https://reponestrength.com/).
One should pay attention on the possible con�ict
of interests in the validation studies. For example
My LiftTM app was validated by the app developer
himself [47], and external validation study advised
against the use of My LiftTM for VBT [519] due to
its excessive velocity errors. In summary, camera-
based systems tend to produce more accurate ve-
locity estimates [519, 623], and currently they are
preferred over IMU systems.
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Figure 6. Velocity-based training (VBT) (A) Given a camera or an IMU-based system, one can use the execution
velocity (e.g. velocity of the barbell in bench press [273, 698]) to program the training. Bench press velocities
across RM range. (B) Example of an 8-week program from Weakley et al. [860] with velocity loss targets for
each week, i.e. providing an alternative quantitative target to % of 1RM, to achieve and not go further on each
training session. (C) With real-time sweat-based sensing, one could track metabolic (lactate) and neuromuscular
(ammonia) fatigue to estimate optimal inter-set recovery [697]. Figure modi�ed from Wikipedia, licensed under
CC BY 2.0 (https://sv.m.wikipedia.org/wiki/Fil:Bench_press_yellow.jpg).
1RM 1-repetition maximum, MCV mean concentric velocity

VI. VISUALISATION, SERIOUS GAMES
AND REAL-TIME FEEDBACK

For both real-time and o�ine analysis, it is not
trivial how the visualisation of an individual train-
ing session, and progression over training cycles is
implemented. The subtle changes in movement
and the associated physiological parameters dur-
ing one set or the whole training session need to be
visualised [69, 121, 487], and made interpretable
to human [164, 336], for e�ective decision mak-
ing. Conceptually, one could think of extending
the video motion magni�cation techniques from
inter-frame di�erence visualisation [590], to inter-
repetition/set/session di�erence visualisations.
For example, Baptista et al. [51] used colour

coding for each body segment to visualise the cor-
rectness of the movement execution. Adithya et
al. [45] rendered the athlete as an 3D avatar [426],
and visualised subtle motion as swing trajectories
and twisting motion with color coding (See �g-
ure 7A). For general population, and in clinical
applications, an interesting outside-the-box visu-
alisation technique is to involve participants in 3D
printing of their activity data (e.g. as food items
and allowing better engagement with the exercise
or rehabilitation process in a novel and entertain-
ing way as demonstrated by Khot et al. [402] with
the Shel�e framework.
Lee et al. [464]5 developed a system with the

5https://youtu.be/a3jfyJ9JVeM

3D avatar being driven by the output of musculo-
skeletal model (see IIID), i.e. the human motion
was driven by the muscle contraction dynamics.
The authors demonstrated their model with an
avatar doing deadlifts with various loads demon-
strating realistic weight-dependent deadlift execu-
tion. Additionally, the model allowed the mod-
eling of the e�ects of pathological muscle weak-
ness and the use of prostheses on biomechanics. In
other words, it would be possibly to use the model
by Lee et al. [464] with the continuously acquired
measures reviewed in section �III as inputs for an
athlete-speci�c musculoskeletal model. The model
could be applied in real-time to quantify and visu-
alise su�cient ankle and hip mobility before start-
ing heavy squat exercise and the associated muscle
sti�ness. As a result, the model could predict sug-
gestions such as an increase in pre-workout war-
mup or to do a lighter exercise to poor prepared-
ness to train. . Facebook has demonstrated a sim-
ilar full body tracking model for VR applications
with muscle activation simulation along with the
kinematic data 6.
The avatar representation, using common game

engines such as Unity [746, 757, 927] or Unreal
Engine (UE) [12, 29, 83, 488], transfers also well
for home based physical rehabilitation and remote
athletic coaching through robotic coach. The ro-
bot [35, 689], either a physical robot or an avatar,

6Facebook 2020 Research: Photorealistic Avatars &
Full Body Tracking https://youtu.be/Q-gse_hFkJM(
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Figure 7. (A) Visualisation for real-time motion (I [51], III [45]) and EMG/GRF (II [6, 339]) assessment,
individualised neuromuscular model (NMS) driving 3D avatar. The NMS allows speci�c muscle groups and
its e�ect to movement to be highlighted (IV [464]). In our simpli�ed example, the athlete has a knee valgus
[338], resulting from weak hip abductors, and we can follow longitudinally (V, see e.g. [254, 461]) the e�cacy
of recommended exercises for strengthening. (B) The NMS model can be used to drive haptic feedback system,
implemented for example in a smart compressive garment, and use to provide real-time haptic feedback for the
athlete to correct movement execution. In our example case of knee valgus, the athlete might need a targeted
strength training program for strengthening the hip abductors (i.e. gluteus medius, gluteus minimus, and tensor
fasciae latae) [158] to mitigate knee valgus. The exercise recommender engine (see e.g. [70, 508, 581, 922]), with
the NMS in idealised case would be able to detect automatically overall weakness in hip abductors, or session-
speci�c issues for example due to poor warm-up or insu�cient recovery from previous session possibly leading
to increased injury risk, complimentary to human expert assessment [316]. The same model could be then used
to visualize the progression in hip abductor strength from acquired data, and display it on a dashboard system
for the athlete and the coach [254]. Squat images from John Paul Cauchi's video on mitigating knee valgus
https://youtu.be/Lt6OxhEHavQ.

can be trained to learn the physiotherapist's or
coach's technique suggestions for that given ath-
lete, and becoming able to autonomously interact
with the athlete without human intervention [518].
In addition or as alternative way to improve train-
ing annotation, one could record the eye gaze of
the supervising coach when observing the move-
ment execution, and input the gaze heatmap as
an attention mechanism to the model as a super-
vision for the robot model training [388, 468]. It
could be hypothesised that the gaze of the hu-
man expert would be focused on the body parts
with technique errors, allowing the deep learning
to focus more on those video/joint regions during
model training for better performing motion qual-
ity assessment model.

A. Serious games

Recently, physical rehabilitation programs has
been increasingly deployed as serious games [86],
i.e. the game having utility (seriousness) bey-

ond just entertainment [114]. These have been
shown the potential to improve patient adherence
to rehabilitation [7, 30], and have been evaluated
through randomised clinical trials (RCTs) [86],
and validated for improved clinical outcome meas-
ures [524]. Serious games have been well received
by the clinicians, especially when co-designed with
them [31, 54, 72, 459, 884, 887].

Various exergames, i.e. games with a �tness as-
pect, have been introduced as games for the gen-
eral population [88, 222, 292, 426, 453, 476, 567,
648, 768, 859]. The use of gami�cation and VR
have garnered interest also from elite-level sports
[10, 198, 420, 578], but in contrast to physiother-
apy, the goal in elite-level sports is often not to
improve adherence to training, but to provide com-
plimentary training to real life exercises [787], fa-
cilitate sports psychology counselling [80], or to
provide preventive mental health care [11, 238,
534, 848]. Ijaz et al. [352] for example showed that
VR exergame players can be roughly classi�ed into
those that are entertainment-focused (consumers,
clinical populations), and those who are exercise-
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focused (e.g. elite athletes), in practice suggesting
that the design of games for such too distinct pop-
ulations might require very di�erent approaches.

In strength training (e.g. in powerlifting train-
ing), gami�cation of heavy squats in virtual reality
is not necessarily desired, so for what could VR
be used in strength training? Based on practical
experience, a fraction of strength athletes do not
like to do su�ciently activities supporting recov-
ery from training such as stretching and mobility
exercises. Some athletes �nd these activities bor-
ing and have poor adherence to these activities,
and could bene�t from making them more enga-
ging and fun to do routinely. One could try to
gamify such activities with short term goals, for
example with visualising the progress in hip and
ankle mobility, and the resulting improved squat
1-RM within a causal model. This game could be
further designed to include human expert oversight
to avoid injuries [871].

B. Real-time feedback methods

As with visualisation, it is important for the user
experience (UX), how the movement quality and
the related corrections are communicated in real-
time, or o�ine to the athlete [400] or to the re-
habilitation patient [95] after the exercise . The
optimal feedback depends on the exercise type,
the required mental focus, experience level of the
athlete, and the granularity of needed feedback.
For example, post-surgery physical rehabilitation
patients or beginner yoga practitioners, might be
happy with a simple �lower your arms'-type of
verbal feedback [602, 661], while others might �nd
it strenuous and needlessly ambiguous [282]. Cor-
rectly executed exercise could be rewarded with a
simpler auditory feedback such as a click [215], or
by a movement soni�cation such as experimented
in physical rehabiliation [579, 711], or with music
feedback that was shown recently to improve dead-
lift technique [499]. In sEMG studies, it was shown
tha tfocused verbal feedback had a positive impact
on activating triceps brachii more than without
feedback [249, 604], highlighting the need of some
human oversight and encouragement [565, 852].

Haptic feedback is relatively easy to implement
integrated to athletic gear for example as smart
insoles [118, 212, 368], embedded in smart com-
pressive garment [235, 598] (see �gure 7B), in gen-
eric clothing [418, 928], or attached around limbs
[827, 929]. In gym environments, providing easily
digestible visual feedback becomes challenging as
the use of large displays cannot be used for better
readability, and the UX with a small smartphone
or tablet display, as used by the Perch VBT cam-
era system (https://perch.�t/), can be poor dur-
ing exercise. Visual and haptic feedback in theory
allow body part speci�c feedback in contrast to

binary correct vs. incorrect audio click, in which
the degree of correctness is hard to communicate
also.

Winchester et al. demonstrated how bar path
visualisation and verbal feedback was able to
improve kinematic and kinetic performance in
Olympic weightlifting, both in clean and jerk [879]
and in snatch[880]. Elvitigala et al. [212] showed
how it is possible to e�ectively communicate ath-
lete's centre of pressure changes during squat and
deadlifts via haptic insoles and visual aids. Turmo
Vidal et al. [827] followed a Research through
Design approach [259], and evaluated several feed-
back methods for gym exercises. The authors
found athlete-mounted laser light projection to be
useful in monitoring planking posture [828], haptic
hip feedback useful for monitoring hip tilt in squat,
and arm-worn LED light, similar to the earlier
'wearable displays' [260], to be useful for track-
ing execution speed of barbell curls. They also
highlighted the problems of visual feedback for ex-
ample with squats, where one does not want ath-
letes to make any undesired head movements and
gaze changes, that would increase their risk of in-
jury.

The visual feedback has been shown to work
well with less intense exercise such as performing
Tai Chi exercises at home [806]. Displaying the
video of the user next to the instructor with user
skeleton overlaid on the user video, was found to
be the most e�ective feedback for skills learning.
With the emergence of so-called �smart mirror sys-
tems' [57, 74, 335, 551, 611], it might be possible to
overlay all the relevant feedback on the large-scale
mirrors typically found in gym and dance studio
environments, that most of the athletes probably
will �nd the most intuitive way of receiving visual
feedback as they are accustomed already monitor-
ing their execution from mirrors.

VII. CONCLUSION

We have outlined the emerging framework of
data-driven precision strength training, adopting
the data-driven precision from precision medicine,
and building on the top of evidence-based person-
alised strength training to model the intra- and
inter-individual variabilities in response to training
(see section �II). In practice, despite the recent ad-
vances in athlete monitoring technology, long his-
tory of data use in sports analytics [531, 536, 550,
714, 882], and the rise of deep learning, no training
system yet exists meeting the expectations of pre-
cision medicine as translated to strength training
[873]. Some companies are riding the �AI hype
train' claiming to have be built AI systems on
�world's largest datasets� without any external val-
idation for their claims. This is however not a
problem unique for �sports AI' though, with many
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Figure 8. (A) A ubiquitous measurement technology (multimodal sensing) embedded on a smart compressive
garment [628]. The new hardware products themselves are not su�cient for precision strength training as
exempli�ed by many failed wearable sensor suits such as En�ux TM and OMSignalTM [155]. The hardware require
data ingestion pipeline that is easily integrated to larger systems such as athlete management systems (AMS)
via APIs. (B) The data from compressive garment would then be used to drive the personalised neuromuscular
(NMS) model based on deep reinforcement learning (RL) (see �gure 7). That could be used to analyse single
training sessions and track the progress of the athlete combining all the measurements of the athlete, e.g. the
electrical medical records (EMR) and other self-tracked information. (C) Motivating examples on how to open-
source proprietary S&C datasets for modelling purposes. (I) Learn to Move challenge is targeted for the deep
reinforcement learning community, as a shared benchmark to evaluate di�erent modelling ideas, (II) Kaggle
competitions (https://www.kaggle.com/) often come with prize money from sponsors, such as in the NFLTM 1st
and Future to predict injuries (https://www.kaggle.com/c/n�-playing-surface-analytics), (III) Papers With Code |
Machine Learning Datasets provide a centralised database for existing datasets and the published models and their
performance on those datasets (https://www.paperswithcode.com/datasets), (IV) Qure.ai (https://qure.ai/) is a
radiology startup that open-sourced a small subset of their proprietary data essentially as a marketing for their
commercial main product [140].

�disruptive� AI-driven companies taking similar
marketing-heavy paths [218, 283, 545, 730].

Main challenge facing the development of pre-
cision strength training is the lack of suitable
open-source and proprietary datasets (see �g-
ure 8C). Strength training is waiting for its ��tbit-
isation�, i.e. easy to use measurement device with
large-scale adoption, for capturing data at elite,
prosumer and recreational levels, at a data qual-
ity level pertinent for strength training individu-
alisation. The sheer amount of data tends to be
more valuable in medical deep learning, instead of
an over-engineered and over�tting model with the
fanciest method from the recent trending papers
[143, 560, 580, 586]. In practice, the large-scale
datasets could be achieved by a massive uptake
of smart compressive garments capturing multiple
modalities at once (section �III). Examples of sim-
pler smart compressive garments (see �gure 8A)
are developed by such companies as formsenseTM,
AthosTM, MyantTM, and asenseiTM. Large-scale
datasets from similar types of data modalities,
such as ergonomics tracking for AmazonTM ware-
house workers to reduce musculoskeletal disorders
[777], could be used in self-supervised learning

setting to improve the features learned also for
strength training modalities.

Additionally, strength training is missing its
�grand challenge� / NeurIPS-level benchmark
dataset, for which AI and sports science labs would
base their models for and compete against each
other. Strength training research could draw in-
spiration from the �Learn to Move' competition,
that is aimed at developing new deep reinforce-
ment learning musculoskeletal models for human
locomotion [758]. The converge of strength train-
ing modeling with musculoskeletal modeling �eld
(see �gure 8B) seems likely in near future as the
data and model outputs are essentially the same
[465, 466, 693].

Often researchers and data-generating institu-
tions are also hesitant in sharing integral part of
their intellectual property, and innovative ways to
encourage data sharing is needed. One possible av-
enue for getting some open-source data is to share
a subset of the proprietary dataset essentially as
a �marketing tool� or as business development ef-
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fort, as done for example by MatterportTM7 for 3D
indoor data [921], and Qure.aiTM for intracranial
hemorrhage (ICH) CT data [140]. Additionally
data-only journals have emerged [176, 719] allow-
ing data-only publications count as published art-
icles in bureaucratic institutional key performance
indicators (KPIs), and helping to advance the ca-
reer of the scientists.

The emerging deep reinforcement learning
(DRL) models are most likely being applied �rst
to clinical challenges [673, 707, 758, 890], but
with collaborative interest from sports scientists,
the models developed e.g. with OpenSIM-RL [404]
could be easily retrained for athlete populations.
In practice, this could be done through �ne-tuning
pre-trained robotic and/or clinical locomotion
models with self-supervised learning for smaller
athletic datasets (IVB). DRL has been studied in
medical prescriptive modeling [501, 620], and al-
lows the modeling of intra- and inter-individual
responses to exercise (ambiguous ground truths)
[855]; and inclusion of the preferences/constraints
of the athlete by learning a set of DRL policies
[523]. In other words, the model could be con-
strained by human decisions, such as how the clin-
ical outcome changes if the patient prefers surgery
over a prolonged therapy, and how for example
athlete's squat could improve given the athlete's
preference for rep ranges [458] and exercise selec-

tion [90, 94].
In summary, precision strength training is cur-

rently lacking large-scale open-source datasets and
the measurement technology with good user exper-
ience (UX) to facilitate creation of those datasets.
While waiting for the pervasive wearable sensor
platforms (e.g. smart compressive garments),
initial proof-of-concept datasets with laboratory
quality technology could be released as 'Grand
Challenges', Kaggle competitions or similar bench-
marking dataset, to accelerate the strength train-
ing research towards the long-term goal of pre-
cision strength training. Larger sports training
centres and organisations with existing propriet-
ary datasets, who are able to adopt data-centric
business strategy, are probably the ones succeed-
ing over the ones simply hiring individual data sci-
entists [56, 126, 547, 658, 732, 741]. Additionally,
the most concepts reviewed here are not unique to
strength training, and can be adopted in clinical
physiotherapy such as in stroke rehabilitation [5],
physiotherapy for pain management [430], sports
injury rehabilitation [39], osteoarthritis rehabilita-
tion [125], and orthopaedic surgery rehabilitation
[79, 241, 474, 799].
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